If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-9p-18=0
a = 5; b = -9; c = -18;
Δ = b2-4ac
Δ = -92-4·5·(-18)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-21}{2*5}=\frac{-12}{10} =-1+1/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+21}{2*5}=\frac{30}{10} =3 $
| 45-1.50r=21 | | 6s-4=20 | | 21k+3=18k+9 | | x/5+4=15 | | P(x)=−3(x−5)^2+12 | | 1/2x+6=3/2(x+6) | | 6p^2+2p-104=0 | | 16−3p=32 p+5 | | 6a^2-19a+8=0 | | -7(r-7)-r=89 | | 6a^2-19a+14=0 | | x+4-x/2=27 | | 56=4x-12 | | 136=3(2x+8)+8x | | 17y+47=115 | | 2r^2+11r-6=0 | | a/124=75/100 | | 3x+0.5=12.5 | | 4x+9=6+3x+9 | | 88=8-4(3a-2) | | 2n^2-3n-119=0 | | 71=-9d+8 | | 5(1-5a)=180 | | x+103+103+97+83=540 | | (y÷6)-3=-11 | | 14=8r-10 | | 5/2=(7)/(2x+10) | | 100(1.08^x)=150 | | 2k^2-12k+18=0 | | -3x+1/2=-1/2 | | 286=v-8(1-6v) | | 2n^2-8n-120=0 |